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Exact amplitude ratio and finite-size corrections for theMÃN square lattice Ising model

N. Sh. Izmailian1,2 and Chin-Kun Hu1,3,*
1Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

2Yerevan Physics Institute, Alikhanian Brothers 2, 375036 Yerevan, Armenia
3Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan

~Received 18 September 2000; revised manuscript received 18 July 2001; published 7 February 2002!

Let f , U, andC represent, respectively, the free energy, the internal energy, and the specific heat of the
critical Ising model on theM3N square lattice with periodic boundary conditions, andf ` representsf for fixed
M /N and N→`. We find that f , U, and C can be written asN( f 2 f `)5( i 51

` f 2i 21 /N2i 21, U52A2
1( i 51

` u2i 21 /N2i 21, andC58 ln N/p1(i50
` ci /N

i, i.e., N f andU are odd functions ofN21. We also find that
u2i 21 /c2i 2151/A2 andu2i /c2i50 for 1< i ,` and obtain closed form expressions forf , U, andC up to
orders 1/N5, 1/N5, and 1/N3, respectively, which implies an analytic equation forc5.

DOI: 10.1103/PhysRevE.65.036103 PACS number~s!: 05.50.1q, 75.10.Hk
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I. INTRODUCTION

The Ising model has been used to represent critical p
nomena in ferromagnets, binary alloys, binary fluids, g
liquid mixture, etc., and is perhaps the most widely stud
model of critical phenomena@1#. For analyzing the simula
tion or experimental data of finite critical systems@2#, it is
useful to appeal to theories of finite-size corrections@3# and
finite-size scaling@4#. Such theories have attracted much
tention in recent years@5–9# because of the fast advance
computers’ computing power and algorithms for simulati
or analyzing data. Theories of finite-size effects and of fin
size scaling, in general, have been most successful in d
ing critical and noncritical properties of infinite systems fro
those of their finite or partially finite counterparts. Finite-si
corrections and finite-size scaling for theM3N square lat-
tice Ising model are of particular interest because the Is
model is very popular and such system is usually used to
the efficiency of algorithms for studying critical system
@10#. In the present paper, we present analytic results
finite-size effects in the Ising model on a largeM3N square
lattice at the critical point.

Finite-size scaling is the basis of the powerful pheno
enological renormalization group method@11,12#. In the two-
dimensional Ising model the finite-size effect on the ren
malization transformation has been demonstrated to be ra
benign@13#, and the effects due to convergence to the fix
point and finite size are clearly distinguished@14#. The finite-
size scaling theory predicts that near the critical point
singular part of the thermodynamic quantity of a finite sy
tem, sayQs , has the scaling form

Qs5LyQYQ~L/j`!, ~1!

whereL is system linear size,j` is the correlation length o
the bulk system,yQ is a critical exponent, andYQ is the
scaling function. The scaling ansatz mentioned above ign
the possible logarithmic corrections. In the case of pla
Ising model, which displays a logarithmic singularities in t
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specific heat behavior due to a relation between scaling
ponents in the renormalization group theory@11#, the scaling
form ~1! must then be replaced by a more general fo
@4,15–17#

Qs5LyQYQ~L/j`!1LyQ ln LXQ~L/j`!, ~2!

which in the case of the specific heat~C! becomes

Cs5YC~L/j`!1 ln LXC~L/j`!. ~3!

The results of this paper to be presented below show tha
leading term ofCs is 8 lnL/p, all other finite-size corrections
to the specific heat are always integer powers ofL21, which
also imply that the scaling functionXC in Eq. ~3! is constant
and equal to 8/p. Very recently, Caselleet al. @18# have
shown that this result can be predicted by conformal fi
theory under a number of general conjectures.

The relevance of the finite-size properties to the conf
mal field theory is another source of interest. Discussion
general properties of nonuniversal corrections to finite-s
scaling and their relation to irrelevant operators in conform
field theory can be found in Ref.@19#. On the basis of con-
formal invariance, the asymptotic finite-size scaling behav
of the critical free energyf N per site and the inverse corre
lation lengthjN

21 of a N3` system is found to be@20#

lim
N→`

N2~ f N2 f `!5
cp

6
, ~4!

lim
N→`

NjN
2152px, ~5!

where f ` is the free energy of the bulk system,c is the
conformal anomaly number, andx is the scaling dimension
The corrections to Eqs.~4! and ~5! can be calculated by the
means of a perturbated conformal field theory@21,22# and
can be expressed in terms of the universal structure cons
(Cnln) of the operator product expansion@21#. Quite re-
cently, Izmailian and Hu@9# studied the finite-size correctio
terms for the free energy and the inverse correlation lengt
critical Ising model onN3` lattices and obtained a new s
of the universal amplitude ratios for the coefficients in t
©2002 The American Physical Society03-1
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free energy and the inverse correlation length expansion
was shown that such results could be understood from a
turbated conformal field theory.

Based on Onsager’s solution, explicit calculations of
specific-heat finite-size scaling behavior have been repo
by Ferdinand and Fisher@3# and by Kleban and Akinci@23#.
In 1969, Ferdinand and Fisher@3# first studied finite-size
corrections for a critical Ising model onM3N square lat-
tices with periodic boundary conditions. They gave expli
expressions for the critical free energyf, internal energyU,
and specific heatC per lattice site for a fixedj5M /N and
largeN up to orders 1/N2, 1/N, and 1/N, respectively,

f 5 f `1
1

jN2 F ln~u21u31u4!2
1

3
ln~4u2u3u4!G1OS 1

N3D ,

~6!

U52A22
1

N

2u2u3u4

u21u31u4
1OS 1

N2D , ~7!

C5
8

p
ln N1

8

p S ln
25/2

p
1CE2

p

4 D2
16

p

(
i 52

4

u i lnu i

u21u31u4

24jS u2u3u4

u21u31u4
D 2

22A2
u2u3u4

u21u31u4

1

N

1O~@ ln N#3/N2!, ~8!

where u i5u i(0,q)( i 52,3,4) is elliptic theta functions o
modulusq5e2pj, CE is the Euler constant, andf ` is the
free energy in the thermodynamic limitM ,N→`.

In 1983, Kleban and Akinci@23# gave a very accurate an
relatively simple approximate closed form expression
leading specific-heat correction term that results from reta
ing only the two largest eigenvalues of the transfer mat
This approximation is already good atj51 and becomes
exponentially better with increasingj, and they interpreted
their results in terms of domain-wall energies.

In this paper we study the same system as@3# and find
that f , U, and C can be written as N( f 2 f `)
5( i 51

` f 2i 21 /N2i 21, U52A21( i 51
` u2i 21 /N2i 21, and C

58lnN/p1(i50
` ci /N

i, i.e., N f and U are odd functions of
N21. We also find thatu2i 21 /c2i 2151/A2 andu2i /c2i50
for 1< i ,` and obtain analytic equations forf , U, andC
up to orders 1/N5, 1/N5, and 1/N3, respectively, which im-
plies an analytic equation forc5.

We have also shown that Kleban and Akinci approxim
tion is in excellent agreement with our exact results for
leading correction terms of the free energy (f 1), the internal
energy (u1), and the specific heat (c0 ,c1) at j>1. For the
next correction terms the error introduced by the tw
eigenvalues approximation is maximum atj51 (M5N).
With increasingj the exact and approximate values approa
exponentially and approximation becomes already good
j51.65 for the correction termsf 3 ,u3 ,c2 ,c3 and at j
51.85 for the correction termsf 5 ,u5.
03610
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This paper is organized as follows. In Sec. II, we write t
free energyf, the internal energyU, and the specific heatC
of the Ising model in terms ofP1 , P2 , P3 , P4 , Q1 , Q2,
and Q3 defined in this section. In Sec. III, we prese
asymptotic expansions forf , U, andC. In Sec. IV, we dis-
cuss some problems for further studies. Some mathema
details used in the derivation of equations in Sec. III a
given in the Appendix.

II. ISING MODEL

Consider an Ising ferromagnet on anM3N lattice with
periodic boundary conditions~i.e., a torus!. The Hamiltonian
of the system is

bH52J(̂
i j &

sisj , ~9!

whereb5(kBT)21, the Ising spinssi561 are located at the
sites of the lattice and the summation goes over all near
neighbor pairs of the lattice. The partition functionZMN(T)
of a finite M3N square Ising lattice wrapped on a torus c
be written as

ZMN~T!5
1

2
~2 sinh 2J!(1/2)MN(

i 51

4

Zi , ~10!

where the partial partition functionsZi are defined by

Z15 )
r 50

N21

2 cosh
M

2
g2r 115P1 expFM

2 (
r 50

N21

g2r 11G ,

~11!

Z25 )
r 50

N21

2 sinh
M

2
g2r 115P2 expFM

2 (
r 50

N21

g2r 11G ,

~12!

Z35 )
r 50

N21

2 cosh
M

2
g2r5P3 expFM

2 (
r 50

N21

g2r G ~11e2Mg0!,

~13!

Z45 )
r 50

N21

2 sinh
M

2
g2r5P4 expFM

2 (
r 50

N21

g2r G ~12e2Mg0!,

~14!

with

P15 )
r 50

N21

~11e2Mg2r 11!, P25 )
r 50

N21

~12e2Mg2r 11!,

P35 )
r 51

N21

~11e2Mg2r !, P45 )
r 51

N21

~12e2Mg2r !, ~15!

andg r is implicitly given by

coshg r5
cosh2 2J

sinh 2J
2cos

rp

N
. ~16!
3-2
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At the critical point Jc of the square lattice Ising mode
whereJc5 1

2 ln(11A2), one then obtains

g r
(cr)52csqS rp

2ND , with csq~x!5 ln~sinx1A11sin2 x!.

~17!

The free energy, the internal energy per spin, and the spe
heat per spin can be obtained from the partition funct
ZMN

f 5
1

MN
ln ZMN5

1

2
ln 2 sinh 2J1

1

MN
ln

1

2 S (
i 51

4

Zi D ,

~18!

U52
1

MN

d

dJ
ln ZMN

52coth 2J2
1

MN S (
i 51

4

Zi8D Y S (
i 51

4

Zi D , ~19!

C5
1

MN

d2

dJ2
ln ZMN

52
2

sinh2 2J
1

1

MN H S (
i 51

4

Zi9D Y S (
i 51

4

Zi D
2F S (

i 51

4

Zi8D Y S (
i 51

4

Zi D G2J , ~20!

where the primes denote differentiation with respect toJ. At
the critical point (T5Tc) the partial partition functionsZi
and their first and second derivatives are given by

Z15P1eA, Z25P2eA, Z352P3eB, Z450; ~21!

Z1850, Z2850, Z3850, Z4854M P4eB; ~22!

Z19

MN
5Q1Z1 ,

Z29

MN
5Q2Z2 ,

Z39

MN
5Q3Z3 ,

Z4952A2Z48 , ~23!

where

A5
M

2 (
r 50

N21

g2r 11
(cr) , B5

M

2 (
r 50

N21

g2r
(cr) , ~24!

Q15
1

2N (
r 50

N21

g2r 119(cr) tanh
Mg2r 11

(cr)

2
, ~25!

Q25
1

2N (
r 50

N21

g2r 119(cr) coth
Mg2r 11

(cr)

2
, ~26!

Q354j1
1

2N (
r 51

N21

g2r9
(cr) tanh

Mg2r
(cr)

2
, ~27!
03610
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and Pi are given by Eq.~15! with g r5g r
(cr) and g r9

(cr) de-
note the second derivative ofg r with respect toJ at the
critical point J5Jc . Then the exact expression for the fre
energy, the internal energy, and the specific heat of a fi
Ising model at critical point (T5Tc) can be written as

f 5
1

2
ln 21

1

MN
A1

1

MN
ln

P11P212P3 exp~B2A!

2
,

~28!

U52A22
4

N

P4

2P31~P11P2!exp~A2B!
, ~29!

C5A2U2jS 4P4

2P31~P11P2!exp~A2B! D
2

1
2Q3P31~Q1P11Q2P2!exp~A2B!

2P31~P11P2!exp~A2B!
. ~30!

III. ASYMPTOTIC EXPANSIONS

We consider only sequences of lattices in whichj
5M /N remains positive and finite as the thermodynam
limit M ,N→` is approached. Using Taylor’s theorem w
find thatMg r is even function of 1/N at the critical point

Mg r
(cr)5(

i 50

`
ai

N2i
5pjr 2

p3j

12

r 3

N2
1

p5j

96

r 5

N4
1••• .

~31!

Using Euler-Maclaurin summation formula@24# we can ex-
pandA andB up to arbitrary order

A5
MN

p E
0

p

csq~x!dx1M (
k51

`
2B2k

~2k!!
~22k2121!csq

(2k21)~0!

3S p

2ND 2k21

5
2G

p
MN1

pj

12
1

7p3j

1440

1

N2
1

31p5j

24 192

1

N4

1
10 033p7j

9 676 800

1

N6
1•••, ~32!

B5
MN

p E
0

p

csq~x!dx2M (
k51

`
2B2k

~2k!! S p

ND 2k21

csq
(2k21)~0!

5
2G

p
MN2

pj

6
2

p3j

180

1

N2
2

p5j

756

1

N4
2

79p7j

75 600

1

N6
2•••,

~33!

whereB2i are the Bernoulli numbers andG50.915 965̄ is
Catalan’s constant.

Let us now evaluate the productsPi for i 51,2,3,4. It is
easy to see from Eqs.~15! and ~31! that Pi contains only
even power of 1/N
3-3
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Pi5p i~0,j!S 11(
j 51

`
pi j

N2 j D ~ i 51,2,3,4!, ~34!

P15p1~0,j!S 11
p11

N2
1

p12

N4
1••• D ,

P25p2~0,j!S 11
p21

N2
1

p22

N4
1••• D ,

P35p3~0,j!S 11
p31

N2
1

p32

N4
1••• D ,

P45p4~0,j!S 11
p41

N2
1

p42

N4
1••• D ,

with

p1~0,j!5
u3

u0
, p2~0,j!5

u4

u0
, p3~0,j!5

u0
2

u3u4
,

03610
p4~0,j!5u0
2 , epj/45

2u0
3

u2u3u4
,

where u i5u i(0,q) is elliptic theta functions of modulusq
5e2pj. The explicit expressions for the coefficientspi1 and
pi2 for i 51,2,3,4 are given in the Appendix.

One readily sees from Eqs.~28!, ~29!, and~32!–~34! that
the finite-size estimates of the free energy (N f) and the in-
ternal energy~U! must be odd functions ofN21.

N~ f 2 f `!5(
i 51

`
f 2i 21

N2i 21
, ~35!

U52A21(
i 51

`
u2i 21

N2i 21
. ~36!

Substituting Eqs.~32!–~34!, ~A14!, and ~A15! in Eqs.
~28! and~29! we can write the expansions of the free ener
(N f) and the internal energy~U! at the critical point (T
5Tc) up to 1/N5 order. The final result is
N~ f 2 f `!5
j21

N F ln~u21u31u4!2
1

3
ln~4u2u3u4!G2

p3

N3

8u2u3u4@u3
3~u2

31u4
3!2u2

3u4
3#27~u2

91u3
91u4

9!

1440~u21u31u4!

1
1

N5

jK8

189p2

f 511S E8

K8
2

E

K D f 52

u21u31u4
1OS 1

N7D , ~37!

with

f 525u2~232148k2278k4131k6!1u3~31278k2148k4232k6!1u4~31215k2215k4131k6!, ~38!

f 515u2~232180k2238k4121k6!1u3~31288k2188k4!1u4~31267k2125k4221k6!

1
21

8

u3u4k4~11k82!21u2u3k84~11k2!21u2u4~k822k2!2

u21u31u4
, ~39!

and

U52A22
2

N

u2u3u4

u21u31u4
1

2

N3

u2u3u4~u2
91u3

91u4
9!

~u21u31u4!2

p3j

96
1

2

N5

u2u3u4

~u21u31u4!2

j2K8

3p2 FU511S E8

K8
2

E

K D U52G1OS 1

N7D
~40!

with

U525u3~k822k2!2u2k4~11k82!1u4k84~11k2!, ~41!
3-4



EXACT AMPLITUDE RATIO AND FINITE-SIZE . . . PHYSICAL REVIEW E 65 036103
U515u3

23264k2164k4

24
1u2k4

1618k22k4

24
1u4~12k2!2

2326k22k4

24

1
u3u4k4~11k82!21u2u3k84~11k2!21u2u4~k822k2!2

12~u21u31u4!
, ~42!
rg
o-
en
n

e
ula
d

qs.
that
Ak-
s

xi-

tion

ts

as-

d the
ns
int
where f `520.5 ln 222G/p andu2 ,u3 ,u4 are elliptic func-
tions,

u25A2kK~k!

p
, u35A2K~k!

p
, u45A2k8K~k!

p
,

~43!

with K(k) and E(k) the elliptic integrals of the first and
second kind, respectively. For simplicity we denoteK
[K(k), K8[K8(k), E[E(k), andE8[E8(k).

It is interesting to compare our results for the free ene
and the internal energy with Kleban and Akinci tw
eigenvalues approximation. Keeping only two largest eig
valuesl0 andl1 of the transfer matrix, the partition functio
of the Ising model can be written as

ZMN5l0
M1l1

M ~44!

with

l05~2 sinh 2J!N/2 expS 1

2 (
r 50

N21

g2r 11D , ~45!

l15~2 sinh 2J!N/2 expS 1

2 (
r 51

N

g2r D , ~46!

wheregk is implicitly given by Eq.~16!.
To write the critical free energyf and critical internal en-

ergy U in the form of Eqs.~35! and ~36!, we must evaluate
Eqs. ~45! and ~46! asymptotically. These sums can b
handled by using the Euler-Maclaurin summation form
@24#. After a straightforward calculation, we have obtaine

N~ f 2 f `!5
f 1

(app)

N
1

f 3
(app)

N3
1

f 5
(app)

N5
1•••, ~47!

U52A21
u1

(app)

N
1

u3
(app)

N3
1

u5
(app)

N5
1••• ~48!

with

f 1
(app)52

p

12
2

1

j
ln~11e2pj/4!, ~49!

f 3
(app)5

p3

2880
@1215 tanh~pj/8!#, ~50!
03610
y

-

f 5
(app)5

p5

48384
@1263 tanh~pj/8!#2

p6j

73728
sech2~pj/8!,

~51!

u1
(app)5211tanh~pj/8!, ~52!

u3
(app)5

p3j

192
sech2~pj/8!, ~53!

u5
(app)5

p5j

768
sech2~pj/8!2

p6j2

36 864
sech2~pj/8!

3tanh~pj/8!. ~54!

The expressions of the coefficients given by Eqs.~49!–~54!
are much simpler than their exact counterparts given by E
~37!–~42!. Nevertheless, one can see from Figs. 1 and 2
two-eigenvalues approximation proposed by Kleban and
inci is already good atj51 for the leading corrections term
in the free energy (f 1) and the internal energy (u1) and
becomes exponentially better with increasingj. The error
introduces by the two-eigenvalues approximation is ma
mum atj51 (M5N). With increasingj the exact and ap-
proximate values approach exponentially and approxima
becomes already good atj51.65 for the correction terms
f 3 ,u3 and at j51.85 for the correction termsf 5 ,u5. We
consider the casej>1 only. By symmetry, the same resul
hold for j851/j<1.

To calculate the specific heat we must also evaluate
ymptotically the sums appearing in the expression~30! for C,
namely, Q1 , Q2, and Q3. Since the analysis follows the
same general lines as in the cases of the free energy an
internal energy, we will not present the details of calculatio
and we quote here only results, namely, at the critical po
T5Tc the asymptotic expansion of the sumsQ1 , Q2, and
Q3 can be written as

Qi5
8

p
ln N1(

j 50

`
qi j

N2 j
for ~ i 51,2,3!, ~55!

whereqi0 andqi1 ~for i 51,2,3) are given by

q105
8

p S CE1 ln
25/2

p
22 lnu3D , ~56!

q205
8

p S CE1 ln
25/2

p
22 lnu4D , ~57!
3-5
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q305
8

p S CE1 ln
25/2

p
22 lnu2D , ~58!

q1152
8K4j

9p2 F11~122k2!S E8

K8
2

E

K D G , ~59!

q2152
8K4j

9p2 F123k21~11k2!S E8

K8
2

E

K D G , ~60!

q315
8K4j

9p2 F223k21~22k2!S E8

K8
2

E

K D G . ~61!

It is easy to see from Eqs.~29!, ~30!, ~34!, and~55! that the
asymptotic expansion of the specific heat, can be written

FIG. 1. Finite-size free energy correction terms~a! f 1, ~b! f 3,
and ~c! f 5 as functions of the aspect ratioj, which are defined by
Eqs. ~37!, ~38!, ~39!, and ~43!. Solid curves: exact values; dashe
curves: two-eigenvalue approximations of Eqs.~49!–~51!. The ex-
act and approximate values approach exponentially asj increases.
03610
s

C5
8

p
ln N1(

i 50

`

ci /Ni . ~62!

Except for the leading term, all other corrections in t
asymptotic expansion of the specific heat are proportiona
1/Ni , without multiplicative logarithms. This result imply
immediately that scaling functionXC in Eq. ~3! is constant
and equal to 8/p.

It is also clear that the contribution to odd (N22i 21) order
in the specific-heat expansion give only first term in righ
hand side of the Eq.~30!. Thus, we can obtained immed
ately that the ratiou2i 11 /c2i 11 of subdominant (N22i 21)
finite-size corrections term in the internal energy and
specific-heat expansions are constant, namely,

u2i 11 /c2i 1151/A2 ~63!

FIG. 2. Finite-size internal energy correction terms~a! u1, ~b!
u3, and~c! u5 as functions of the aspect ratioj, which are defined
by Eqs.~40!–~43!. Solid curves: exact values; dashed curves: tw
eigenvalue approximations of Eqs.~52!–~54!. The exact and ap-
proximate values approach exponentially asj increases.
3-6
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as well thatu2i /c2i50 for 1< i ,`.
Let us now evaluate the first few terms in the specific-h

expansion. Substituting Eqs.~32!–~34!, ~55!, ~56!–~61!,
~A14!, and ~A15! in Eq. ~30! we have finally obtained the
expansion of the specific heat~C! at the critical point (T
5Tc),

C5
8

p
ln N1

8

p S ln
25/2

p
1CE2

p

4 D24jS u2u3u4

u21u31u4
D 2

2
16

p

(
i 52

4

u i lnu i

u21u31u4
22A2

u2u3u4

u21u31u4

1

N
1

c2

N2

1
1

N3

p3j

24A2

u2u3u4~u2
91u3

91u4
9!

~u21u31u4!2
1OS 1

N4D 1OS 1

N5D ,

~64!

with

c25
p3j2

12

u2
2u3

2u4
2~u2

91u3
91u4

9!

~u21u31u4!3
1

p2j

9

u3
4u4

4~2u22u32u4!

u21u31u4

2
p2j

6

u2u3u4

~u21u31u4!2 F ~u3
41u4

4!u2
3 ln

u3

u4

2~u2
41u3

4!u4
3 ln

u2

u3
1~u2

42u4
4!u3

3 ln
u2

u4
G

2
p

9

u2
51u3

51u4~u2
41u3

4!22u2u3~u2
31u3

3!

u21u31u4

3~122ju3
2E!. ~65!

Equation~63! imply that the amplitude of the termO(1/N5)
in Eq. ~64!, i.e.,c5, is A2u5 whereu5 is the amplitude of the
N25 correction terms in the internal energy expansion E
~40!.

In two-eigenvalues approximation the specific heat can
written as

C5
8

p
ln N1c0

(app)1
c1

(app)

N
1

c2
(app)

N2
1

c3
(app)

N3
1•••

~66!

with

c0
(app)5

8

p S ln
25/2

p
1CE2

p

4 D1j sech2~pj/8!

1
8 ln 2

p
@211tanh~pj/8!#, ~67!

c1
(app)5A2@211tanh~pj/8!#, ~68!
03610
t

.

e

c2
(app)52

p

9
1

p

6
@211tanh~pj/8!#1

p2j ln 2

24
sech2~pj/8!

2
p3j2

96
sech2~pj/8!tanh~pj/8!, ~69!

c3
(app)5

p3j

96A2
sech2~pj/8!. ~70!

We plot the aspect-ratio (j) dependence of the finite-siz
specific-heat correction termsc0 andc2 in Fig. 3. The exact
and approximate values approach exponentially asj in-
creases. Note, that the ratios of correction termsu1 /c1 and
u3 /c3 are constant and given by Eq.~63!. In Fig. 4 we plot
the aspect-ratio dependence of the error introduced by t
eigenvalue approximation for the correction terms in the f
energy, internal energy, and specific-heat asymptotic exp
sions. The deviation of the two-eigenvalues approximat
from exact result is about one percentage atj51 for the
leading correction termsf 1 ,u1 ,c0, at j51.65 for the second
correction termsf 3 ,u3 ,c2, atj51.85 for the third correction
terms f 5 ,u5, and diminishes very rapidly asj increases.

It is of interest to compare this finding with other resul
Equations~37!, ~40!, and~64! are consistent with Ferdinan
and Fisher’s similar expansions@3# up to orders 1/N2, 1/N,
and 1/N, respectively. Others terms in our equations, exc
the term ofO(1/N3) for U @6#, are new. Forj51, we have
u350.206 683 145̄ and u550.730 182 312 347̄ that are

FIG. 3. Finite-size specific-heat correction terms~a! c0 and ~b!
c2 as functions of the aspect ratioj, which are defined by Eqs.~64!
and~65!. Solid curves: exact values; dashed curves: two-eigenva
approximations of Eqs.~67! and ~69!. The exact and approximat
values approach exponentially asj increases.
3-7
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quite consistent with numerical datau350.206 683 133 and
u550.730 182 312 35 obtained by Salas and Sokal@8#.

IV. DISCUSSION

The results of this paper inspire several problems for f
ther studies:~i! can one obtain an exact asymptotic expa
sion for the thermodynamic functions up to arbitrary ord
as it can be done for the Ising model onN3` square, hon-
eycomb, and plane triangular lattices@9#. ~ii ! It is of interest

FIG. 4. The error introduced by two-eigenvalue approximat
for the correction terms in the free energy, internal energy,
specific-heat asymptotic expansions.~a! The error for the leading
correction termsf 1 , u1, andc0 as functions ofj. ~b! The error for
the second correction termsf 3 , u3, andc2 as functions ofj. ~c!
The error for the third correction termsf 5 andu5 as functions ofj.
The vertical axes represent the error defined by Error5(aexact

2aapprox)/aexact, wherea stand for the correction terms in the fre
energy, internal energy, and specific-heat asymptotic expans
Solid curves: free energy; dashed curves: internal energy;
dashed curves: specific heat. The deviation of the two-eigenva
approximation from exact result is about one percentage atj51 for
the leading correction terms, atj51.65 for the second correctio
terms, atj51.85 for the third correction terms and diminishes ve
rapidly asj increases.
03610
r-
-
,

to know whether the amplitude ratio of Eq.~63! can be ex-
tended to honeycomb and plane triangular lattices,
whether the ratio is universal.~iii ! If, so, how do such am-
plitudes behave in other models, for example, in the thr
state Potts model?

Note added. After the completion of this paper, w
learned that similar results have been independently obta
by Salas@26#.
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APPENDIX

Let us now evaluate the coefficientspi1 and pi2 for i
51,2,3,4. After little algebra, following the general lines
the Ferdinand and Fisher paper@3#, we can obtain the fol-
lowing expression for the coefficientspi1 andpi2 :

p1152
1

3
p3jF1

4 (
j 51

`

~21! j
coshpj j

sinh2 pj j

1
3

2 (
j 51

`

~21! j
coshpj j

sinh4 pj j
G ,

p2152
1

3
p3jF1

4 (
j 51

`
coshpj j

sinh2 pj j
1

3

2 (
j 51

`
coshpj j

sinh4 pj j
G ,

~A1!

p3152
1

3
p3jF (

j 51

`
~21! j

sinh2 pj j
1

3

2 (
j 51

`
~21! j

sinh4 pj j
G ,

p4152
1

3
p3jF (

j 51

`
1

sinh2 pj j
1

3

2 (
j 51

`
1

sinh4 pj j
G ,

p125
1

2
p11

2 1
4p6j3

81 F 3

pj
C1~pj!1

d

d~pj!
C1~pj!G ,

p225
1

2
p21

2 1
4p6j3

81 F 3

pj
C2~pj!1

d

d~pj!
C2~pj!G ,

p325
1

2
p31

2 1
4p6j3

81 F 3

pj
C3~pj!1

d

d~pj!
C3~pj!G ,

~A2!

p425
1

2
p41

2 1
4p6j3

81 F 3

pj
C~pj!1

d

d~pj!
C~pj!G ,

with

d

s.
t-
es
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C1~x!5
1

128 (
j 51

`

~21! j coshx jS 1

sinh2 x j
1

60

sinh2 x j

1
120

sinh6 x j
D ,

C2~x!5
1

128 (
j 51

`

coshx jS 1

sinh2 x j
1

60

sinh4 x j
1

120

sinh6 x j
D ,

~A3!

C3~x!5
1

16 (
j 51

`

~21! j S 2

sinh2 x j
1

15

sinh4 x j
1

15

sinh6 x j
D ,

C~x!5
1

16 (
j 51

` S 2

sinh2 x j
1

15

sinh4 x j
1

15

sinh6 x j
D .

Let us now introduce the following notation:

Sn~x!5(
j 51

`
1

sinhn x j
for n52,4,6. ~A4!

Then the coefficientspi1 andpi2 can be rewritten in the more
symmetrical way,

p115
1

3
p3jF1

8
R~j/2!2

5

4
R~j!12R~2j!G ,

p215
1

3
p3jFR~j!2

1

8
R~j/2!G ,

~A5!

p315
1

3
p3j@R~j!22R~2j!#,

p4152
1

3
p3jR~j!,

and

C1~j!522C~2j!1
17

16
C~j!2

1

32
C~j/2!,

C2~j!52C~j!1
1

32
C~j/2!, ~A6!

C3~j!52C~2j!2C~j!

with

R~x!5S2~x!1
3

2
S4~x!, ~A7!

C~x!5
1

16
@2S2~x!115S4~x!115S6~x!#. ~A8!
03610
Thus we have shown that the coefficientspi1 andpi2 can be
expressed in terms of the only object, namelySn(x) for n
52,4,6. TheS2(x) is given by~see@25#, p. 721!

S2~x!5
1

6
1

2~22k2!

3p2
K2~k!2

2

p2
K~k!E~k!, ~A9!

wherex5pK8(k)/K(k) with K(k) andE(k) the elliptic in-
tegrals of the first and second kind, respectively. TheS4(x)
andS6(x) are calculated to be

S4~x!52
11

90
2

4~22k2!

9p2
K2~k!1

4

3p2
K~k!E~k!

1
8~12k21k4!

45p4
K4~k!, ~A10!

S6~x!5
191

1890
1

32~22k2!

45p2
K2~k!2

16

15p2
K~k!E~k!

2
8~12k21k4!

45p4
K4~k!

2
32~223k223k412k6!

945p6
K6~k!. ~A11!

Thus we are now in position to evaluateR(x) and C(x)
given by Eqs.~A7! and ~A8!, respectively. The result is

R~x!52
1

60
1

4~12k21k4!

15p4
K4~k! ~A12!

C~x!5
1

1008
2

2~223k223k412k6!

63p6
K6~k!. ~A13!

The expressions forR(2x),R(x/2) andC(2x),C(x/2) can
be written as function of the modulusk by using properties
of the elliptic functions.

Thus for the coefficientspi1 ~for i 51,2,3,4) we have fi-
nally obtained

p1152
7p3j

1440
1

~718k228k4!j

90p
K4~k!,

p2152
7p3j

1440
1

~7222k217k4!j

90p
K4~k!,

~A14!

p315
p3j

180
1

~2818k217k4!j

90p
K4~k!,

p415
p3j

180
2

4~12k21k4!j

45p
K4~k!.
3-9



N. SH. IZMAILIAN AND CHIN-KUN HU PHYSICAL REVIEW E 65 036103
After little algebra the expressions forpi2 ~for i 51,2,3,4)
can be written as

p125
j2K8

189p2 F31288k2188k41~31278k2148k4232k6!

3S E8

K8
2

E

K D G2
31p5j

24192
1

p11
2

2
,

p225
j2K8

189p2 F31267k2125k4221k61~31215k2215k4

131k6!S E8

K8
2

E

K D G2
31p5j

24192
1

p21
2

2
, ~A15!
l

d

0

,
-

.

,

.

03610
p3252
j2K8

189p2 F32280k2138k4221k61~32248k2178k4

231k6!S E8

K8
2

E

K D G1
p5j

756
1

p31
2

2
,

p4252
16j2K8

189p2 F225k215k41~223k223k412k6!

3S E8

K8
2

E

K D G1
p5j

756
1

p41
2

2
,

where for simplicity we denoteK[K(k), K8[K8(k), E
[E(k), andE8[E8(k).
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